Measurement of the Induced $\Lambda(1116)$ Polarization in K⁺ Electroproduction at CLAS M. Gabrielyan¹, B. Raue¹, D.S. Carman², K. Park² 1. Florida International University 2. Jefferson Lab

> NSTAR 2011 5/19/2011

Motivation. Why study ground state hyperon electroproduction?
CLAS detector and analysis.
Analysis results.
Current status and future work.

Motivation

This study is *part* of a larger program that has a goal of measuring as many observables as possible for *KY* electroproduction.

> Understand which N^* 's couple to KY final states.

> These data are needed in a coupled-channel analysis to identify previously unobserved N^* resonances.

➢ Get a better understanding of the strange-quark production process by mapping out the kinematic dependencies for these observables.

 \succ The results will tell us which (if any) of the currently available models best describe the data.

CEBAF Large Acceptance Spectrometer

•Toroidal magnetic field in region 2

•3 regions of drift chambers located spherically around target provide charged particle tracking for angle and momentum reconstruction

•Cherenkov detectors provide e/π separation

•Electromagnetic calorimeters give total energy measurement for electrons and neutrals and also e/π separation

•Time of flight scintillators for particle ID

Kinematics and E1F Dataset

- Beam energy = 5.5 GeV
- Unpolarized Target
- Torus current = 2250 A
- 5B triggers, 213000 Λ's

- 0.8 < Q² < 3.5 GeV²
- 1.6 < W < 2.8 GeV
- $-1.0 < \cos(\theta_{K}^{CM}) < 1.0$

Particle Identification

Electrons:

- Coincidence between CC and EC in the same sector.
- Negatively charged track in DC that matches in time with TOF.
- Momentum corrections applied to correct for DC misalignments and inaccuracies in the magnetic field map.

Hadrons: Time difference (Δt) between the measured time and the computed time for a given hadron species (π^+ , K^+ , p). *Minimum* Δt identifies the hadron.

Hadron Identification

Minimum Δt identifies the hadron.

After Λ and π missing mass cuts

∧ Identification

> Reconstructed missing mass for $e+p \rightarrow e'K^+(Y)$ > For recoil polarization observables $e+p \rightarrow e'K^+p(\pi^-)$ include π^- missing-mass cut

Background in the hyperon missing mass spectrum is dominated by π 's misidentified as K⁺.

Cross Section for Electroproduction

$$\frac{d^{5}\sigma}{dE'd\Omega_{e}d\Omega_{K}^{*}} = \Gamma \frac{d^{2}\sigma_{\nu}}{d\Omega_{K}^{*}}$$

Polarized beam & recoil Λ , unpolarized target.

$$\frac{d\sigma_v}{d\Omega_K^*} = \sigma_0(1 + hA_{LT'} + P_{x'}\hat{x}'\cdot\hat{S}' + P_{y'}\hat{y}'\cdot\hat{S}' + P_{z'}\hat{z}'\cdot\hat{S}')$$

∧ Polarization Extraction

Parity non-conservation in weak decay allows to extract recoil polarization from p angular distribution in Λ rest frame.

$$\frac{dN}{d\cos\theta_p^{RF}} = N_0 (1 + \alpha P_\Lambda \cos\theta_p^{RF}),$$

where: α=0.642 0.013 (PDG)

$$P_{\Lambda} = \frac{2}{\alpha} \cdot \frac{N_F - N_B}{N_F + N_B}$$

Here N_F and N_B are the acceptance corrected yields.

After ϕ integration only P_N component survives for induced polarization (P_L , $P_T = 0$).

Carman et al., PRC 79 065205 (2009)

Acceptance Corrections

FSGen: Phase space generator with modified t-slope :

t-slope = 0.3 GeV⁻²

Acceptance corrections are applied to background subtracted yields.

0.8<Cos(θ_K^{CM})< 1.0

Background Subtraction

RPR Model

 Non-resonant background contributions treated as exchanges of kaonic Regge trajectories in the *t*-channel: K(494) and K^{*}(892) dominant trajectories. Both have a rotating Regge phase.

This approach reduces the number of parameters.

- Included established s-channel nucleon resonances: S11(1650), P11(1710), P13(1720), P13(1900)
- Included *missing* resonance: D13(1900).
- Model was fit to forward angle (cos $\theta_{K}^{CM} > 0$) photoproduction data (CLAS, LEPS, GRAAL) to constrain the parameters.

Corthals et al., Phys. Lett. B 656 (2007)

Induced Polarization vs W (photoproduction)

Red: McCracken, CLAS 2010 Blue: McNabb, CLAS 2004 Green: Glander, SAPHIR 2004 Black: Lleres, GRAAL 2007

Dashed lines indicate the physical limits of polarization.

Induced Polarization vs W (photoproduction)

SUMMARY

- Background subtraction and acceptance corrections are complete.
- ➢ RPR theoretical model calculations are in good agreement with experimental data at very forward kaon angles but they fail to reproduce the data at all other kaon angle bins.
 - RPR gives a reasonable description of photoproduction data (cos $\theta_{\kappa}^{CM} > 0$).

Experimental data are similar for both electro- and photoproduction at forward kaon angles, but are very different for backward kaon angles.

NEXT...

- Complete the systematic error analysis.
- Comparison to different theoretical models.

Funded in part by: The U.S. Dept. of Energy, FIU Graduate School

